Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation
نویسندگان
چکیده
In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientation and geometry between model and patient influence model predictions on cardiac function. Therefore, we evaluated the sensitivity of cardiac function for geometry and myofiber orientation in a biventricular (BiV) finite element model of cardiac mechanics. Starting out from a reference geometry in which myofiber orientation had no transmural component, two new geometries were defined with either a 27 % decrease in LV short- to long-axis ratio, or a 16 % decrease of RV length, but identical LV and RV cavity and wall volumes. These variations in geometry caused differences in both local myofiber and global pump work below 6 %. Variation of fiber orientation was induced through adaptive myofiber reorientation that caused an average change in fiber orientation of [Formula: see text] predominantly through the formation of a component in transmural direction. Reorientation caused a considerable increase in local myofiber work [Formula: see text] and in global pump work [Formula: see text] in all three geometries, while differences between geometries were below 5 %. The findings suggest that implementing a realistic myofiber orientation is at least as important as defining a patient-specific geometry. The model for remodeling of myofiber orientation seems a useful approach to estimate myofiber orientation in the absence of accurate patient-specific information.
منابع مشابه
Towards Patient Specific Models of Cardiac Mechanics: A Sensitivity Study
In the design of patient specific mathematical models of cardiac mechanics, the lack of patient specific input data leads to default settings of various model parameters. To estimate the potential errors thus introduced, we evaluated changes in predicted mechanics in a model of the left ventricle (LV) induced by changes in geometry, fiber orientation, heterogeneity of passive material behavior ...
متن کاملStructure and torsion in the normal and situs inversus totalis cardiac left ventricle. II. Modeling cardiac adaptation to mechanical load.
Mathematical models provide a suitable platform to test hypotheses on the relation between local mechanical stimuli and responses to cardiac structure and geometry. In the present model study, we tested hypothesized mechanical stimuli and responses in cardiac adaptation to mechanical load on their ability to estimate a realistic myocardial structure of the normal and situs inversus totalis (SIT...
متن کاملWhy SIT Works: Normal Function Despite Typical Myofiber Pattern in Situs Inversus Totalis (SIT) Hearts Derived by Shear-induced Myofiber Reorientation
The left ventricle (LV) of mammals with Situs Solitus (SS, normal organ arrangement) displays hardly any interindividual variation in myofiber pattern and experimentally determined torsion. SS LV myofiber pattern has been suggested to result from adaptive myofiber reorientation, in turn leading to efficient pump and myofiber function. Limited data from the Situs Inversus Totalis (SIT, a complet...
متن کاملLeft Ventricular Shear Strain in Model and Experiment: The Role of Myofiber Orientation
Mathematical modeling of cardiac mechanics could be a useful clinical tool, both in translating measured abnormalities in cardiac deformation into the underlying pathology, and in selecting a proper treatment. We investigated to what extent a previously published model of cardiac mechanics [6] could predict deformation in the healthy left ventricle, as measured using MR tagging. The model adequ...
متن کاملTowards model-based analysis of cardiac MR tagging data: Relation between left ventricular shear strain and myofiber orientation
Many cardiac pathologies are reflected in abnormal myocardial deformation, accessible through magnetic resonance tagging (MRT). Interpretation of the MRT data is difficult, since the relation between pathology and deformation is not straightforward. Mathematical models of cardiac mechanics could be used to translate measured abnormalities into the underlying pathology, but, so far, they even fa...
متن کامل